

PRODUÇÃO DE BIODIESEL UTILIZANDO OLEO DE FRITURA E APLICAÇÃO DO GLICEROL RESIDUALNA PRODUÇÃO DE BIOFERTILIZANTE PARA CULTURA DA SOJA

Assis 2013

FILIPE ALVES DE OLIVEIRA

PRODUÇÃO DE BIODIESEL UTILIZANDO OLEO DE FRITURA E APLICAÇÃO DO GLICEROL RESIDUAL NA PRODUÇÃO DE BIOFERTILIZANTE PARA CULTURA DA SOJA

Projeto de iniciação científica apresentado ao Instituto Municipal de Ensino Superior de Assis

Orientador: Prof.ªMS. Gilcelene Bruzon

Área de Concentração: Ciências Exatas e da Terra

Assis 2013

LISTAS DE ILUSTRAÇÕES

Figura 1 - Equação geral para uma reação de transesterificação	. 16
Figura 2- Transesterificação do óleo (In: FRANCISCO 2012, p.13)	. 17
Figura 3- Glicerol bruto e biodiesel (In: JUNIOR 2011, p.30)	. 17
Figura 4- Separação do glicerol e Biodiesel	. 18
Figura 5- Biodigestores	. 19
Figura 6- Plantio das sementes de soja	. 23
Figura 8- 10 dias após o plantio	. 24
Figura 7- 05 dias após o plantio	. 24
Figura 9- 15 dias após o plantio	. 24
Figura 10- 20 dias após o plantio	. 25
Figura 11- 25 dias após o plantio	. 25
Figura 12- Análise de macro nutriente	. 27
Figura 13- análise de micro nutriente	29

SUMÁRIO

1. INTRODUÇÃO	6
2. PROBLEMATIZAÇÃO	8
3. FORMULAÇÃO DE HIPÒTESE	9
4. OBJETIVOS	10
4.1 OBJETIVO GERAL	10
4.2 OBJETIVO ESPECÍFICO	10
5. JUSTIFICATIVA	11
6. REVISÃO DE LITERATURA	12
6.1 BIOFERTILIZANTE	12
6.2 GLICEROL	13
6.3 SOJA	14
7. MATERIAIS E METODOS	15
7.1 MATERIAIS UTILIZADOS	15
7.2 MATERIAIS UTILIZADOS PARA OBTENÇÃO DO GLICEROL	15
7.3 MATERIAS UTILIZADOS NA CONSTRUÇÃO DOS BIODIGESTORE	ES16
7.4 PRODUÇÃO DO BIOFERTILIZANTE	16
7.5 PROCEDIMENTO EXPERIMENTAL	17
7.5.1 Obtenção do glicerol	17
7.5.2 Construção dos biodigestores	18
7.6 METODOLOGIAS DE ANÁLISES	19
7.6.1 Métodos de análises do Biofertilizante	19
7.6.1.1 Nitrogênio Orgânico Total - N	20
7.6.1.2 Fósforo – P ₂ O ₅	20
7.6.1.3 Potássio – K ₂ O	21
7.6.1.4 Carbono Orgânico Total	22
7.6.1.5 Macro e Micronutrientes	22

8. TRABALHO REALIZADO EM CAMPO	24
9. RESULTADOS E DISCUSSÕES	27
9.1 RESULTADOS DOS TESTES REALIZADOS EM CAMPO	30
10. CONCLUSÕES	32
REFERÊNCIAS	33

1. NTRODUÇÃO

Atualmente, vivemos em um mundo que nos leva a uma forma de vida não sustentável, para onde olhamos podemos ver propagandas que nos influenciam sempre a consumir além do que realmente precisamos, gerando toneladas de resíduos diários. A reciclagem é uma alternativa viável para fornecer a esses resíduos um caminho ecologicamente correto, assim a reciclagem de resíduos agrícolas e agro-industriais vem ganhando grande destaque, não simplesmente porque os resíduos representam matérias primas de baixo custo, mas, principalmente, porque os efeitos da degradação ambiental decorrente de atividades industriais e urbanas estão atingindo níveis cada vez mais alarmantes (COSTA NETO et al., 2000).

O elevado custo do óleo vegetal, principal matéria-prima para a produção de biodiesel no mundo, é fator que determina o alto custo do biodiesel (PREDOJEVIC, 2008). No Brasil, osóleos vegetais virgens para a produção de biodiesel sãoprovenientes devárias culturas, como a soja, o algodão, ogirassol, a palma, o amendoim e a mamona. Há também a utilização de matérias primas residuais, como a gordura animal e o óleo residualde fritura (VALENTE et al., 2010).

O óleo residual de fritura é proveniente do consumo deóleos vegetais comestíveis virgens refinados. Após esseconsumo, são basicamente dois os possíveis destinos, o esgoto sanitário, causando a poluiçãoda água e onerando seu tratamento e os processadoresque transformam o resíduo em um novo produto. Nestecontexto, o desejável seria encaminhar esse resíduo para osprocessadores, como fábricas de biodiesel (GUABIROBA, D'AGOSTO, 2011)

O programa Nacional de produção do Biodiesel, lançado pelo Governo Federal, introduz o biodiesel no setor energético brasileiro, com a perspectiva de aumento do glicerol bruto subproduto gerado na obtenção do biodiesel. Para cada 100 litros de biodiesel são produzidos 10 quilos de glicerol, assim torna-se interessante a busca pelo aproveitamento economicamente viável do glicerol (LARSEN, 2009).

O uso de produtos alternativos como os biofertilizantes na agricultura vem crescendo em todo o Brasil, pois há a preocupação pela busca de insumos menos agressivos ao meio ambiente, que possibilitem o desenvolvimento de uma agricultura menos dependente de produtos industrializados (MEDEIROS et al., 2007). Este biofertilizante pode ser enriquecido com diversos nutrientes, favorecendo o desenvolvimento de diversas culturas.

Assim o aproveitamento dos resíduos rurais e industriais, hoje são reconhecidos como fontes renováveis e sustentáveis de energia.

1. PROBLEMATIZAÇÃO

Em todas as residências há o uso de óleo para fritura. Na maioria dos casos, acaba sendo jogado diretamente na pia, contaminando o ambiente. Este óleo quando usado para produção de biodiesel gera o glicerol. Em trabalho anterior verificou-se um aumento de nutrientes no biofertilizante quando adicionado o glicerol e outros resíduos industriais. Sabendo-se que o glicerol, subproduto da produção de biodiesel possui alguns elementos necessários para o crescimento das plantas, fazse necessário avaliar se sua utilização em conjunto com o biofertilizante, gerado a partir da biodigestão de esterco bovino, pode proporcionar uma maior eficiência para a agricultura. Considerando que a cultura da soja é intensa em nossa região, tornase interessante testar o biofertilizante nesta cultura.

2. FORMULAÇÃO DE HIPÓTESE

Com a adição dos resíduos industriais, há a possibilidade de obtenção de uma maior concentração de nutrientes no biofertilizante obtido a partir da biodigestão de esterco de boi. O teste em campo pode mostrar na prática os benefícios da utilização do biofertilizante para as plantas e para o solo.

4. OBJETIVOS

4.1 OBJETIVO GERAL

Avaliar a influência da aplicação do biofertilizante contendo glicerol, subproduto da produção de biodiesel a partir de óleo residual, na cultura da soja.

4.2 OBJETIVO ESPECÍFICO

Avaliar a aplicação do biofertilizante (fase líquida) no solo antes do plantio da soja e posterior aplicação foliar. Quantificar os teores de macro e micro nutrientes no solo antes e após a aplicação do biofertilizante. Comparar o crescimento das plantas com e sem a adição do biofertilizante.

5. JUSTIFICATIVA

A problemática dos resíduos sólidos tem sido discutida mundialmente. Várias alternativas vêm sendo estudadas para a resolução desse problema como: compostagem, reciclagem, construção de biodigestores, aterros sanitários, etc (ANDREOLI, 2001).

O aproveitamento simultâneo de resíduos de diferentes processos pode ser uma alternativa para a preservação do meio ambiente. A partir de óleo residual é possível produzir biodiesel e glicerol. A partir de esterco bovino é gerado um resíduo que pode ser utilizado como fertilizante, o qual pode ser enriquecido com a adição de outras fontes de nutrientes, como o glicerol. O biofertilizante por sua vez pode ser aplicado em diversas culturas tornando-se interessante testar sua aplicação na cultura da soja, que é amplamente cultivada na região de Assis, sendo a principal matéria prima para produção do óleo mais utilizado pela população.

6. REVISÃO DE LITERATURA

6.1 BIOFERTILIZANTE

Segundo Meirelles et al. (1997) depois da passagem pelo biodigestor, os resíduos apresentam alta qualidade para uso como fertilizante agrícola, devido principalmente a diminuição do teor de carbono do material, pois a matéria orgânica ao ser digerida perde exclusivamente carbono na forma de gás metano e dióxido de carbono, aumentando o teor de nitrogênio e demais nutrientes e diminuindo a relação (C/N), o que melhora as condições do material para fins agrícolas e proporciona maiores facilidades de imobilização do biofertilizante pelos microorganismos do solo, devido ao material já se encontrar em grau avançado de decomposição o que vem aumentar a eficiência do biofertilizante (SEIXAS; FOLLE; MACHETTI, 1980).

Os biofertilizantes apresentam compostos bioativos, que são resultantes da biodigestão de compostos orgânicos de origem animal e vegetal. Em seu conteúdo são encontradas células vivas ou latentes, de microrganismos do metabolismo anaeróbico e também metabólitos e quelatos organominerais em solutos aquoso, no qual esses metabólitos são compostos de enzimas, proteínas, toxinas, vitaminas, antibióticos, fenóis, ésteres e ácidos, de ação fito-hormonal, produzidos e liberados pelos microrganismos (MEDEIROS et al., 2006).

Nos processos de fermentação é possível utilizar produtos para aumentar a velocidade de fermentação, ou seja, produtos que vão alimentar as bactérias que farão a decomposição da matéria orgânica. Tais produtos são chamados de catalisadores (WEINGARTNER; ALDRIGHI; PERERA, 2006).

Adubos orgânicos na forma líquida, como o biofertilizante bovino, tem se convertido em prática eficiente e de baixo custo de fertilização não-convencional, sendo utilizados como forma alternativa de suplementação de nutrientes na produção orgânica. Quando aplicados no solo, proporcionam melhoria nas propriedades físicas (estrutura e porosidade), químicas e biológicas, quando aplicado sobre as

folhas podem contribuir para um suprimento equilibrado de macro e micronutrientes, prevenir contra o ataque das pragas e controlar doenças, a um custo muito baixo, permitindo que o vegetal desenvolva todo o seu potencialgenético e produtivo (ALVES et al., 2009).

6.2 GLICEROL

Glicerol é o nome comum do composto orgânico 1,2,3-propanotriol, descoberto por Carl W. Scheele em 1779 durante a separação de uma mistura aquecida de PbO preparada com óleo de oliva. Os seus sinônimos são glicerina, trihidroxipropano, glicil álcool, gliceril e 1,2,3 trihidroxipropano. O glicerol, na natureza, está presente em vegetais como soja, mamona, babaçu, girassol, palma, algodão, coco, dendê, pinhão manso e em animais, em formas combinadas de glicerina com ácidos graxos. Também é um composto considerado fundamental dentro do sistema metabólico de microrganismos, pois atua como precursor de numerosos compostos; e como regulador de vários mecanismos bioquímicos intracelulares (LAGES, SILVA-GRACA, LUCAS, 1999).

Cada 90 m³ de biodiesel produzidos pelo processo de transesterificação de óleos vegetais são gerados aproximadamente 10 m³ de glicerina. Esta apresenta impurezas como água, catalisador alcalino, álcool não reagido, e ácidos graxos, entre outros compostos (MOTA, PESTANA, 2011).

No Brasil, a maioria das plantas industriais de biodiesel não valoriza efetivamente o glicerol. A projeção do volume de glicerol no país para o ano 2013 é de 488 milhões, mesmo assim, poucas apresentam planos futuros para sua conversão em produtos de maior valor agregado. O glicerol bruto contém elementos nutricionais,como, fósforo, enxofre, magnésio, cálcio, nitrogênio e sódio, que podem ser utilizados por microrganismos para o seu crescimento durante processos fermentativos (THOMPSON, HE, 2006).

Existem numerosos trabalhos na busca de soluções biotecnológicas para a utilização de glicerol originado da produção de biodiesel. Meinicke, Vendruscolo e

Ninow (2007) compararam diferentes meios contendo concentrações variáveis de glicerol e glicose como fonte de carbono para a produção de corantes naturais pelo fungo filmamentoso *Monascus ruber*. O trabalho desenvolvido por Gutierrez e Costa Araújo (2007) comparou a suplementação continua de meios de cultura contendo concentrações variáveis de fonte de aminoácidos e glicerol para a produção de ácido clavulânico. Estes e outros estudos demonstraram a potencialidade da utilização do glicerol para a produção de compostos químicos de interesse comercial.

Rosolem (2002) indica que o glicerol pode ser utilizado como adjuvante, auxiliando a absorção de nitrogênio quando na aplicação de adubo foliar.

6.3SOJA

O nitrogênio (N) é o nutriente requerido em maior quantidade pelacultura da soja. Estima-se que para produzir 1000 kg de grãos são necessários 80 kg de N. Basicamente, as fontes de N disponíveis paraa cultura da soja são os fertilizantes nitrogenados e a fixação biológica do nitrogênio (FBN) (HUNGRIA et al., 2007).

7. MATERIAIS E METODOS

7.1 MATERIAIS UTILIZADOS

Os materiais utilizados para a produção do biodigestor foram de recursos renováveis, e a produção do glicerol foram utilizados reagentes de grau analítico do próprio laboratório da faculdade.

7.2 MATERIAIS UTILIZADOS PARA OBTENÇÃO DO GLICEROL

- chapa aquecedora redonda;
- béquer de 2L;
- proveta de 500 mL;
- balança analica;
- funil de separação de 500 mL;
- termômetro;
- espátula;
- hidróxido de potássio;
- metanol;
- suporte universal.

7.3 MATERIAS UTILIZADOS NA CONSTRUÇÃO DOS BIODIGESTORES

- Tubos de conexão PVC finos;
- Galão para armazenagem da fermentação (esterco e água);
- Garrafa PET de 2L;
- Cola de canos, para colar as conexões PVC;
- Cama de frango;
- Água;
- Glicerol bruto.

7.4 PRODUÇÃO DO BIOFERTILIZANTE

Será produzido biofertilizante a partir de óleo usado coletado na região de Assis. A metodologia aplicada será a transesterificação utilizando hidróxido de sódio e etanol.

Figura 1 - Equação geral para uma reação de transesterificação (In: GERIS et al., 2007, p.1370).

7.5 PROCEDIMENTO EXPERIMENTAL

7.5.1 Obtenção do glicerol

Foi diluído 90gr de KOH em 900ml de metanol e adicionado a 9L de óleo de soja previamente aquecido a aproximadamente 45°C e deixado sob agitação por 30 minutos para a transesterificação.

Figura 2- Transesterificação do óleo (In: FRANCISCO 2012, p. 13)

Após a agitação foi obtido o biodiesel e o glicerol bruto (figura 2) que em seguida foi transferido para os funis de separação para decantação do glicerol, onde foi seprado em duas fases sendo a fase superior o biodiesel e fase inferio glicerol (figura 3).

Figura 3- Glicerol bruto e biodiesel (In: JUNIOR. 2011, p.30).

Figura 4- Separação do glicerol e Biodiesel

7.5.2 Construção dos biodigestores

Na construção dos biodigestores, foram utilizadas garrafas PET, acopladas em mangueiras para a passagem do gás metano (figura 4)

Após realizar a pesagem da cama de frango, foram adicionados os subprodutos, nas devidas proporções citadas anteriormente na qual foi pesado em balança semi-analítica, para ter a precisão necessária para o processo.

Para avaliar o rendimento em diferentes solos da região foram feitas quatro amostras de concentração diferente, sendo:

Galão 1- (5%) 1 Kg de cama de frango + 19L de água.

Galão 2- 1 Kg de cama de frango + 19L de água + 1L de glicerol.

Galão 3- (10%) 2 Kg de cama de frango + 18L de água.

Galão 4- 2 Kg de cama de frango + 18L de água + 1L de glicerol.

Figura 5- Biodigestores

Após ter cumprido o prazo proposto, as garrafas foram abertas e o subproduto foi coletado. As análises foram feitas no laboratório AGROLAB (Laboratório de análises agropecuárias), localizado na cidade de Assis-SP.

7.6 METODOLOGIAS DE ANÁLISES

7.6.1 Métodos de análises do Biofertilizante

Para a realização deste trabalho, foram feitas análises físico-químicas determinando os teores de nitrogênio, fósforo, potássio e carbono orgânico total

7.6.1.1 Nitrogênio Orgânico Total - N

Pesou-se 0,3g da amostra em um tubo de digestão kjeldahl, acrescentou 10 mL de mistura digestora e deixou no bloco de aquecimento até que toda a amostra se encontrava digerida (02 horas e 30 minutos até coloração verde).

Esperou-se esfriar e posteriormente foi adicionada água destilada no tubo e levedo ao destilador, no destilador colocou-se em excesso hidróxido de sódio 50% 30 mL, no qual foi observada a mudança de coloração.

Foi recolhido o destilado em um erlenmeyer contendo 35 mL de uma solução de ácido bórico 4% com indicador misto até completar 150 mL.

Titulou-se o destilado com solução de ácido clorídrico 0,1M e anotou-se o volume gasto.

Cálculo:

%N= 14,007 x fator do ácido HCl x mL gasto na Titulação 100

Peso da amostra

7.6.1.2 Fósforo – P_2O_5

Foi pesado cerca de 1g da amostra em um copo plástico, com a ajuda de um funil transferiu a amostra para um balão volumétrico de 500 mL. Retirou-se uma alíquota de 15 mL e transferiu-a para um erlenmeyer de 250 mL, acrescentou-se 50 mL de água destilada e 5 mL de ácido Nítrico P.A. e levou até a chapa de aquecimento.

Marcou-se 10 minutos após a ebulição. O erlenmeyer foi retirado da chapa de aquecimento e acrescentou-se 35 mL de QUIMOCIAC, retornando a chapa até a ebulição (1 minuto).

Foi retirado o erlenmeyer da chapa, esfriado e posteriormente filtrado em cadinho previamente tarado. Após filtrado o cadinho foi levado a estufa por aproximadamente 2 horas.

Levou ao dessacador e após ter esfriado, foi pesado.

Cálculo:

% P2O5 :
$$PF - PI \times B.A \times 3,20 = Resultado$$

Alíquota P.A

OBSERVAÇÃO: Conversão de P2O5 em P:

2,29

P.F: peso final

P.I: peso inicial

B.A: balão da avolumação - 100 mL

Alíquota: 15 mL

P.A: peso da amostra

7.6.1.3 Potássio – K₂O

Pesou-se cerca de 0,5 g da amostra em um erlenmeyer de 250 mL. Adicionou-se 200 mL de água destilada (na qual havia sido avolumada num balão volumétrico de 200 mL).

O erlenmeyer junto a solução foi levado até o agitador magnético, na qual o mesmo ficou sob intensa agitação por cerca de 2 horas. Após 2 horas o erlenmeyer foi deixado em repouso. Posteriormente retirou-se uma alíquota de 10 mL e transferiu-a para um balão de 100 mL. Foi feita a leitura no fotômetro de chamas.

Cálculo:

b.a / P.A x Aliquota / b.a² x 1.000.000 = C ppm / C x 100 = % ou g/100g de K x 1,2 = % ou g/100g de K2O

22

OBSERVAÇÃO:

b.a: balão da avolumação.

b.a²: balão da avolumação depois de retirar a alíquota

P.A: peso da amostra

c: concentração

ppm: leitura do fotômetro de chama

7.6.1.4 Carbono Orgânico Total

Para esta análise foi feito o procedimento normal da Matéria Mineral e Umidade. Deixou-se primeiramente a umidade na estufa de ar forçado, durante 2 horas na temperatura de 50°C. Posteriormente, o cadinho de umidade foi colocado na estufa de 105°C na qual o mesmo só foi retirado após 3 horas.

Cálculo:

Matéria Mineral + Umidade - 100

1.8

Serão determinados os nutrientes (N, P, K e Carbono orgânico) do solo antes e após a adição do biofertilizante. Será feito um comparativo de crescimento e desenvolvimento da soja em todas as situações testadas. Será adicionado um teste com e sem a adição do biofertilizante. Será feito comparativo de todos os testes.

7.6.1.5 Macro e Micronutrientes

As análises de micro e macro nutrientes sendo elas nitrogênio, cálcio, magnésio, enxofre, zinco, ferro, cobre, manganês, boro, entre outros foram realizadas em cromatografo de absorção atômica no laboratório Agrolab.

8. TRABALHO REALIZADO EM CAMPO

Para o trabalho em campo foram utilizados cerca de 1 Kg de solo da região de Cândido Mota. O solo foi preparado e homogeneizado junto com o biofertilizante para o plantio das sementes de soja da variedade potência. Foram misturado cerca de 300mL do biofertilizante em cada bandeja. Após o crescimento das plantas foi feita uma adubação foliar de 200 mL para cada bandeja.

Semente de soja plantada em vasilhas.

- 5% com e sem glicerol com aplicação nas folhas e solo.
- 10% com e sem glicerol com aplicação nas folhas e solo.
- Uma prova em Branco.

Figura 6- Plantio das sementes de soja

Figura 7- 05 dias após o plantio

Figura 8- 10 dias após o plantio

Figura 9- 15 dias após o plantio

Figura 10- 20 dias após o plantio

Figura 11- 25 dias após o plantio

9. RESULTADOS E DISCUSSÃO

A tabela 10 mostra os resultados obtidos a partir da análise de macro nutrientes em dois tipos de fertilizantes sendo um com 10% de cama de frango e outro com 10% de glicerol mais cama de frango.

	Fertilizante	Fertilizante	
Determinações	10% de cama	com 10% de	Unidade
	de frango	glicerol	
Matéria Orgânica (M.O.)	49,25	12,30	Kg/m³
Carbono Orgânico (CO)	28,67	7,14	Kg/m³
Potássio (K ₂ O)	6.050,00	4.100,00	g/m³
Fósforo (P ₂ O ₅)	2.364,94	1.070,00	g/m³
Nitrogênio (N)	2.185,09	1.988,90	g/m³
Cálcio (Ca)	1.200,00	705,00	g/m³
Magnésio (Mg)	520,00	300,00	g/m³
Enxofre (S)	627,35	244,56	g/m³
Zinco (Zn)	14,25	12,35	g/m³
Ferro (Fe)	332,50	171,00	g/m³
Cobre (Cu)	29,67	20,45	g/m³
Manganês (Mn)	20,75	11,50	g/m³
Boro (B)	3,46	5,03	g/m³

Tabela 1- Análise de macro nutriente



Figura 22- Análise de macro nutriente

De acordo com os parâmetros analisados da tabela 1 e figura 12, o resultado da análise de macro nutriente nos mostra que o fertilizante com cama de frango obteve valores maiores tendo uma média quase duas vezes maior que os resultados da análise do fertilizante com glicerol. Também podemos observar que a quantidade de nitrogênio que o fertilizante contribui para terra e consequentemente para a planta não tem muita importância, pois a soja na sua própria raiz apresenta bactérias fixadoras de nitrogênio, a partir disso temos o exemplo do adubo 2-20-20 com apenas 2 Kg/ha de nitrogênio e alta quantidade de fósforo e potássio. E também se pode notar que durante o processo de fermentação houve a constante produção do gás metano nas garrafas contendo água, onde foi possível visualizar a presença de bolhas.

A tabela 2 mostra os resultados obtidos a partir da análise de micro nutriente na terra sem fertilizante e com o fertilizante.

Determinações		Unidade	Terra sem	Terra com
			fertilizante	Fertilizante
Р	Fósforo resina	mg/dm³	114	221
M.O.	Matéria Orgânica	g/dm³	36	42
С	Carbono orgânico	-	21	24
pH CaCl ₂	Potencial Hidrogênionico	mmolc/dm ³	5,8	6,0
K	Potássio	mmolc/dm ³	3,0	9,8
Ca	Cálcio	mmolc/dm ³	62	70
Mg	Magnésio	mmolc/dm ³	23	26
H+AI	H+AI	mmolc/dm ³	27	25
Al	Alumínio	mmolc/dm ³	0,0	0,0
SB	Soma de bases trocáveis	mmolc/dm ³	88,0	105,8
C.T.C.	Capacidade de troca de	mmolc/dm ³	115,0	130,8
	cátions			
V%	Saturação por base	%	76,5	80,9
m%	Sturação por Al	%	0,0	0,0
S	Enxofre	mg/dm³	16	40
K na CTC	% de potássio na CTC	%	2,6	7,5
Ca na CTC	% de Cálcio na CTC	%	53,9	53,5
Mg na CTC	% de Magnésio na CTC	%	20	19,9
Al na CTC	% de alumínio na CTC	%	0,0	0,0
Ca/K	Relação Ca/k	-	20,7	7,1
Ca/Mg	Relação Ca/Mg	-	2,7	2,7
Mg/K	Relação Mg/K	-	7,7	2,7
Cu	Cobre	mg/dm³	6,0	8,0
Zn	Zinco	mg/dm³	3,2	4,9
Fe	Ferro	mg/dm³	16	21
Mn	Manganês	mg/dm³	24,7	27,1
В	Boro	mg/dm³	0,13	0,20

Tabela 2- Análise de micro nutriente

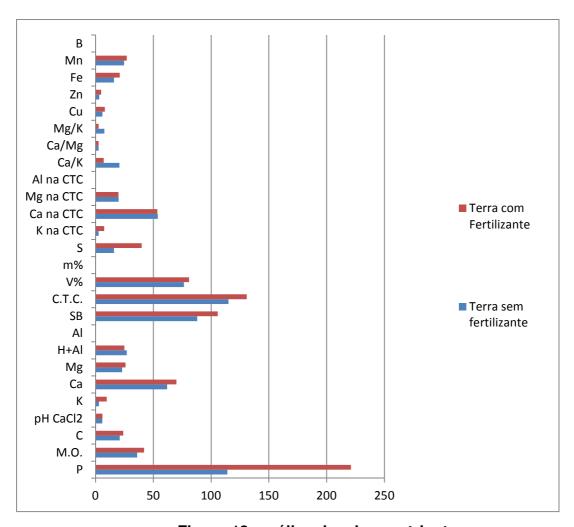


Figura 13- análise de micro nutriente

De acordo com os parâmetros analisados da tabela 2 e figura 13 o resultado da análise de micro nutriente nos mostra que a terra com fertilizante obteve valores maiores que da análise da terra sem glicerol, exceto o parâmetro de H+Al que se apresentou maior na terra sem fertilizante do que a com fertilizante. Temos que frisar também que os nutrientes presentes no fertilizante levam um tempo para que estes sejam incorporados a terra as vezes questão de meses á anos.

9.1 RESULTADOS DOS TESTES REALIZADOS EM CAMPO

A partir dos testes realizados em campo pode-se observar que ao longo dos 25 dias após o plantio das sementes houve um bom e rápido crescimento das plantas,

apesar de ser em pequena quantidade o crescimento foi uniforme em todas as bandejas como mostrado nas fotos acima, entretanto a soja possui uma raiz do tipo fascilculada, com uma raiz primária, originando a partir dessa raiz, raízes secundárias e terciárias e após o 25 dia a planta começou a morrer pelo fato de que a bandeja apresentava uma pequena capacidade para o seu crescimento.

10. CONCLUSÕES

A partir das análises feitas e do teste realizado em campo podemos concluir que, tanto o fertilizante em espécie quanto ele presente na terra tiveram um bom desempenho no crescimento das plantas e também nos parâmetros analisados e verificados neste trabalho. Numa conclusão positiva, pudemos verificar que, apesar de ser um teste em pequena quantidade e de pequeno porte o resultado apresentado foi satisfatório e vantajoso, logo apresentando um grande benefício para a agricultura e um bom resultado na relação Custo x Benefício, ou seja, um custo acessível para um grande desempenho. Em contrapartida, verificamos o tempo de fermentação que pode levar alguns dias para que o fertilizante fique pronto, necessitando em alguns casos de mais tempo de fermentação.

REFERÊNCIAS

ALVES, G. S.; Santos, D.; Silva, J. A.; Nascimento, J. A. M. N.; Cavalcante, L. F.; Dantas, T. A. G. Estado nutricional dopimentão cultivado em solo tratado com diferentes tipos debiofertilizantes. **Acta Scientiarum Agronomy**, v.31, 2009, p.661-665.

ANDREOLI, C.V. (Coord.) Resíduos sólidos do saneamento: **Processamento, reciclagem e disposição final**. Rio de Janeiro: Rima, ABES, 2001.

COSTA NETO, P. R.; Rossi, L. F. S.; Zagonel, G. F.; Ramos, L. P.Produção de biocombustível alternativo ao óleo diesel atravésda transesterificação de óleo de soja usado em frituras.**Química Nova**, v.23, n.4, 2000 p.531-537.

FRANCISCO, Dyonathan Santos. **Utilização de biofertilizante de esterco de boi e resíduos industriais para o cultivo de alface.** 2012. 27p. Projeto de iniciação cientifica (Química Industrial) - Fundação Educacional do Município de Assis - FEMA/Instituto Municipal de Ensino Superior de Assis - IMESA.

GERIS, Regina; SANTOS, Nádia Alessandra Carmo dos; AMARAL, Bruno Andrade; MAIA, Isabelle de Souza; CASTRO, Vinicius Dourado; CARVALHO, José Roque Mota. Biodiesel de Soja – Reação de Transesterificação para Aulas Práticas de Química Orgânica. **Química Nova, v. 30, n. 5, 2007. p. 1369-1373.**

JUNIOR, Valter Eugenio Saia. **Aplicação de subprodutos industriais na produção de biofertilizantes.** 2011. 66p. Projeto de iniciação cientifica (Química Industrial) - Fundação Educacional do Município de Assis – FEMA/Instituto Municipal de Ensino Superior de Assis - IMESA.

GUABIROBA, R. C. S.; D'AGOSTO, M. A. O impacto do custo de coleta do óleo residual defritura disperso em áreas urbanas no custo total deprodução de biodiesel – estudo de caso. **Transportes**. v.19 n.1 (2011), p. 68–76.

GUTIERREZ, L.C.; ARAÚJO, M.L.; Comparação da suplementação continua de meios de cultura contendo concentrações variáveis de fonte de aminoácidos e glicerol para a produção de ácido clavulânico. Anais do XVI Simpósio Nacional de Bioprocessos, Curitiba, Brasil, 2007

LAGES, F., SILVA-GRAÇA; Lucas, C. Active glycerol uptake is a mechanism underlying halotolerance in yeasts: a study of 42 species. **Microbiology**. n.1451,1999, p.2577-2585

LARSEN, Christina. Co-Digestão Anaeróbia de Glicerina Bruta e Efluente de Fecularia. 2009. 88p. Centro de Ciências Exatas e Tecnológicas – Programa de Pós Graduação em Engenharia Agrícola, Universidade Estadual do Oeste do Paraná, UNIOSTE – Campos Cascavel, 2009.

MEDEIROS, M. B.; LOPES; J. S, Biofertilizantes líquidos e Sustentabilidade Agrícola – **Revista Bahia Agrícola**, v. 07, n.3, Novembro, 2006, p.24-26.

MEINICKE, R.M.; VENDRUSCOLO, F.; NINOW, J.L.. Uso de glycerol para a produção de pigmentos porMonascus ruber em fermentação submersa. Anais do XVI Simpósio Nacional de Bioprocessos, Curitiba, Brasil, 2007.

MEIRELLES, L.; BRACAGIOLI Neto, A.; MEIRELLES, A. L.; Gonçalves, A; GUAZZELLI, M. J.; VOLPATO, C. & BELLÉ, N. **Biofertilizantes enriquecidos:** caminho da nutrição e proteção das plantas. lpê: Centro de Agricultura Ecológica, CAE lpê. 1997.

MOTA, C. J. A.;* PESTANA, C. F. M. Co-produtos da Produção de Biodiesel. **Revista Virtual de Quimica**.2011, p. 416-425.

HUNGRIA, M.; CAMPO, R.J.; MENDES, I.C. A importância doprocesso de fixação biológica do nitrogênio para a cultura da soja:componente essencial para a competitividade do produto brasileiro.Londrina: Embrapa Soja, 2007. 80p

PREDOJEVIC, Z. J. The production of biodiesel from waste fryingoils: A comparison of different purification steps. **Fuel**,v. 87, 2008, p.3522–3528.

ROSOLEM, Ciro A. Recomendação e aplicação de nutrientes via foliar. Lavras:UFLA/FAEP, 2002

SEIXAS, J; FOLLE, S.; MACHETTI, D. **Construção e funcionamento de biodigestores.** Brasília: Embrapa-DID. 1980. (Embrapa — CPAC. Circular Técnica, 4).

THOMPSON, J.C.; HE, B. Characterization of crude glycerol from biodiesel production from multiple feedstock. **Applied Engineering in Agriculture**. n. 22, 2006, p. 261-265.

VALENTE, O. S.; V. M. D. PASA; C. R. P. BELCHIOR e J. R. SODRÉ.Physical-chemical properties of waste cooking oil biodiesel andcastor oil biodiesel blends. **Fuel**, v. 90, n. 4, 2010, p. 1700–1702

WEINGARTNER, Marimônio Alberto; ALDRIGHI, Cézar Fernando; PERERA, Apes Falcão, **Cartilha de práticas agroecológicas – caldas e biofertilizantes**, Pelotas – RS, 2006, p. 09-22.